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A domain knowledge-tailored neural network for multiperiod default prediction is proposed. Instead of

using conventional neural networks, we customize them using economic domain knowledge. This allows

us to regulate the model’s performance and avoid overfitting. To attest the effectiveness of our approach,

experiments are conducted from 1994-2021 on a sizable US corporate default dataset. The results demonstrate

that our model performs considerably better than the state-of-the-art econometric model, and it is more

robust than conventional neural networks. In addition, we find our model performs well on several dataset

subgroups. Although its predictive power degrades in the high credit risk years for the long-term horizons, its

performance still can be reasoned. Our proposed method can be applied to most neural networks, providing

inspiration for current machine-learning research on financial applications.
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1. Introduction

Default risk is a lender taking its risk on a borrower who may unable to meet its obligation under

the agreed terms Lando (2009). Thus, credit risk management and the development of financial

policies all depend on an understanding of the factors that cause a default. Due to their different

debt structures, firms may have different risk profiles for long-term debts and short-term debts.

Under this phenomenon, it is critical to consider the term structure in detail for credit analysis.

Although the previous research can provide short-term and long-term risk rates, it still does not

comprehensively consider the term structure of default probabilities. Structured and reduced-form

techniques are the two main categories into which credit risk modeling may be divided. In this

study, we use a reduced-form technique to predict the default term structures.

Altman (1968) was the earliest research that uses a reduced-form technique to address the task of

default prediction. The primary methodology used in this research was discriminant analysis, which
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produces credit scores that only provide ordinal ranks. Later, Ohlson (1980), Zmijewski (1984)

change the methods from discriminant analysis to binary response models, such as logit regression,

but their methods can only generate a default probability for a given period. To address this issue,

Campbell et al. (2008) used a multiple logit model, which can generate the default probabilities

for different prediction horizons. Recently, Duffie et al. (2007) (DSW) used a doubly stochastic

Poisson intensity model to model default occurrences. In their model, in order to generate the

term structure of default probabilities for multiperiod default prediction, it is necessary to specify

time dynamics of the state variables, i.e. modeling a high-dimensional time series, which is hard

to implement in real-world applications. Duan et al. (2012) (FIM), applied a forward intensity

model to the task of default prediction. Like DSW, it can predict both default and other kinds

of corporate exits like mergers and acquisitions, but its approach did not need to explicitly model

and estimate the high-dimensional state variable process. It is now viewed as a state-of-the-art

econometric approach.

Compared with econometric approaches, machine-learning-based approaches have more complex

functional forms, enabling them can have a chance to obtain a better performance. However, most

of the machine-learning research ( Yeh et al. (2014, 2015), Huang et al. (2004), Ribeiro et al.

(2012), Alakar et al. (2018), Sarkar et al. (2018), Sirignano et al. (2016), Eom et al. (2020)) failed

to generate the term structure of default probabilities because they viewed default prediction as a

ranking task. Recently, there are two research solve the previous problem. Luo et al. (2022) used

a carefully designed neural network to generate a consistent term structure of cumulative default

probabilities. Although it can obtain a good performance, it still lacks the information for default

events because it only models cumulative default probabilities instead of the forward intensities

of default events. Divernois (2020) has addressed the previous issue by using neural networks to

predict the forward intensities through the framework in Duan et al. (2012). Nevertheless, its

approach does not consider the overfitting issue of its neural networks, which is an important

problem existing in the current machine-learning research. Besides, its method is not evaluated in

overtime experiments, which may not be applicable in real-world applications.

In this paper, we propose a domain knowledge-tailored neural network to address the task of

multiperiod corporate default prediction. Like Divernois (2020), we follow the framework in Duan

et al. (2012) that can generate the forward intensities for default and the other-exits events. We

can also ensure that our model can obtain a consistent cumulative default term structure with this

framework. Compared with Divernois (2020), our main difference is that we use economic domain

knowledge to tailor our neural model. With this design, our model can have fewer parameters and

still maintain strong predictive power for default prediction, which can be proved in our empirical

results.
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Our experiments are conducted in a large panel dataset covering most of the companies in

the US from 1994 to 2021. We analyze our model through both a cross-sectional experiment and

an overtime experiment. With the results of these two kinds of experiments, it is obvious how

a machine-learning model, especially neural networks, can be easily overfitting. Based on these

results, our domain knowledge-tailored (DKT) approach outperforms the econometric approach

and the traditional neural networks. We can further describe the superiority of our DKT approach

from two aspects. Compared with the econometric approach, our DKT model has more complex

functional forms, indicating it can achieve better predictive power. Compared with the traditional

neural networks, our DKT approach can regulate the model to gain better performance and prevent

it from overfitting. For a more comprehensive analysis, we also conduct overtime experiments to

analyze the model’s performance on different sub-groups of our dataset.

2. Methodology

In this section, we describe the details of our methodology, including the framework we use to

formulate the multi-period default prediction, how to apply machine learning methods to it, and

our proposed domain knowledge-tailored methods.

2.1. Framework: A Forward-Intensity Approach

We follow the forward-intensity approach of Duan et al. (2012) to model the corporate default

events for companies. Under this framework, a firm’s default probability is generated by two doubly

stochastic Poisson processes with one governing default and the other forming of corporate exit,

for example, a merger/acquisition. In contrast to the typical approach of modeling through spot

intensities, forward intensities which depend on the known values of feature variables at the time of

prediction would describe the characteristic of the future events and estimated by the values of the

input variables at the prediction time. With this method, we can forecast the default probabilities

for any prediction horizon (e.g., 1 month, 12 months, and 5 years) without knowing the variables

in the future. Another critical issue in default prediction is that a company can exit the market

for other reasons (e.g., mergers and acquisitions) than default or bankruptcy. To comprehensively

address the default prediction task, we need to take these ” other events” into account by using

another independent Poisson process to model them. Besides, except for the default events and

the other-exit events, we also use a Poisson process to model the survival events for a company,

which represents that a company is still surviving in the market. In this way, since a company can

only default, other-exit, or survive in the market, these three independent Poisson processes are

mutually exclusive.

To formulate the above description mathematically, we use fm(Xi,t) and qm(Xi,t) to represent

the forward intensity of default and other-exit Poisson processes respectively for the time interval
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between m to m+ ∆t, where Xi,t denotes the covariates of the ith company at prediction time t,

∆t denotes the minimum unit of time interval (which is one month in this paper), and m denotes

the prediction horizon. In other words, these two forward intensities are generated by the fm and

qm functions with the same input variable Xi,t. Because we can only use the past information to

generate the forward intensity of a Poisson process, m is greater than or equal to t.

Based on these two kinds of forward intensities and the definition of a Poisson process, we can

first formulate the survival probability as Equation 1, calculating the probability that there are no

default and other-exit events. Secondly, since a default event is signaled by a jump in a Poisson

process, its probability is defined by Equation 2 as a function of its forward intensity. Thirdly,

because these three independent Poisson processes are mutually exclusive, we can calculate the

other-exit forward intensity by Equation 3, which is 1 minus the survival and default probability.

ps(Xi,t;m) = e−(fm(Xi,t)+qm(Xi,t))∗∆t (1)

pd(Xi,t;m) = 1− e−fm(Xi,t)∗∆t (2)

po(Xi,t;m) = 1− ps(Xi,t;m)− pd(Xi,t;m)

= e−fm(Xi,t)
(
1− e−qm(Xi,t)∗∆t

) (3)

With the above forward default and survival probabilities, the cumulative default probabilities

of a given company from time t to t+ n ∗∆t can be computed by Equation 4, which is a sum

of conditional default probabilities. To be more specific, the conditional default probability for

the time interval between m to m+ ∆t is calculated by the forward default probability times the

product of the survival probabilities before time m.

Prob[Xi,t, n;∆t] =
n−1∑
m=0

[
pd(Xi,t;m)

m−1∏
j=0

ps(Xi,t;m)

]
(4)

While the above equations can help us model the three types of forward probabilities and the

cumulative default probability, how to generate the forward intensities is a critical issue. In Duan

et al. (2012), it uses linear regressions to generate the forward intensities, the process of which

can be seen in Equations 5 and 6. In Equation 5, the default forward intensity for the prediction

horizon m is computed by an inner product between β(m) and Xi,t, where β(m) is the coefficient

vector of linear regression and Xi,t is the covariate vector, and then be exponentialized to ensure to

obtain a positive intensity. The superscript ”FIM” denotes that the forward intensity is computed

by the method used in Duan et al. (2012). Likewise, the other-exit forward intensity is calculated

in the same way by Equation 6, where β̄(m) is the coefficient vector of linear regression specifically

for other-exit events. Based on the estimated forward intensities, cumulative default probabilities
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for different time intervals can be computed by Equation 4. The term structure of the cumulative

default probabilities can be further analyzed for the task of multi-period default prediction.

fFIM
m (Xi,t) = exp(β0(m) +β1(m)xi,t,1 + ...+βk(m)xi,t,k)

= exp(β(m) ·Xi,t)
(5)

qFIM
m (Xi,t) = exp

(
β̄0(m) + β̄1(m)xi,t,1 + ...+ β̄k(m)xi,t,k

)
= exp

(
β̄(m) ·Xi,t

) (6)

2.2. Conventional Machine Learning Approaches

2.2.1. Multi-layer Perceptron Although FIM can generate the forward intensities and prob-

abilities in a more simple and explainable way, its limited functional form constrains its perfor-

mance. To obtain a better performance, Divernois (2020) replaced the simple linear regression with

MLP(multi-layer perceptron), one of the machine learning-based models, which has more func-

tional complexity, to generate forward intensities. For simplicity, in the setting of our experiments,

our MLP would generate the two types of forward intensities for all prediction horizons at once.

The process of the generation can be formulated in Equation 7, where the right arrow is a mapping

operator, indicating that the function on the right side can map its arguments and parameters to

the outputs on the left side. To be more specific, at the right side of the arrow, ΘMLP is the function

representing the multi-layer perceptron, in which Xi,t is the input variables, θMLP is the param-

eters of the MLP, and n is a parameter deciding how many prediction horizons for each forward

intensity the MLP would output. On the other side, fMLP
m (Xi,t) and qMLP

m (Xi,t) denote the default

and other-exit forward intensities generated by MLP. It is worth noting that there are brackets

with subscripts outside of the two forward intensities, which is (fMLP
m (Xi,t), q

MLP
m (Xi,t))m=0,1,...,n−1

,

meaning that MLP can generate these two kinds of forward intensities for different prediction

horizons at once.

(
fMLP
m (Xi,t), q

MLP
m (Xi,t)

)
m=0,1,...,n−1

→ΘMLP(Xi,t;θMLP , n) (7)

2.2.2. Gated-Recurrent Unit While MLP can have more complex functionality than FIM,

a recurrent-based deep learning model may have a better ability to succeed in a time-series-based

task. With this thought, we apply Gated-Recurrent Unit(GRU) to the task of multi-period default

prediction by Equation 8. This equation is similar to Equation 7, where the superscripts and the

subscripts are changed from MLP to GRU, indicating that the values are for different models. The

most different part of these two equations is the input variables of the model function. For MLP,

it only takes the covariates of a given company at the current time t. However, for GRU, it takes

the covariates of a given company in the past 12 months before the current time t. Compared with
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MLP, GRU can better capture the time dynamics of the input variables and then obtain a better

performance. For example, if our model can capture both the values and the momentum of the

covariates of a given company, it can produce more accurate default probabilities theoretically.

(
fGRU
m (Xi,t), q

GRU
m (Xi,t)

)
m=0,1,...,n−1

→ΘGRU(Xi,t−11, ...,Xi,t;θGRU , n) (8)

2.3. Domain Knowledge Tailored (DKT) Approaches

2.3.1. The Basic Unit of DKT Machine learning-based models can obtain better perfor-

mance via their complex functional forms, but they may more likely be overfitting. That is what

we call a bias-variance trade-off. In order to regulate our models, we leverage economic domain

knowledge to tailor our neural networks. In other words, we remove some weights of our neural

models through insights from economic research. With this design, we can simplify our model and

prevent it from overfitting in an appropriate way. To be more specific, we can first focus on how

we transform the fully connected layers, a basic unit in deep-learning models, into tailored ones

through economic domain knowledge.

To describe how to tailor a fully connected layer, we need to consider its mechanism from a

different perspective. Traditionally, a fully connected layer is viewed as matrix multiplication.

However, it can also be viewed as a multiple-grouping method. We can take Figure 1 as an example.

In this figure, there are three input variables and three output nodes. For each output node, it

is computed by a unique linear combination of each input variable based on the links between

two nodes (we remove the activation function for simplicity). For example, the blue node may be

computed by 1∗n1 +2∗n2 +3∗n3, where n1, n2, n3 are the input nodes and 1,2,3 are the coefficient

variables for the linear combination. Likewise, the red node may be computed by 2 ∗n1 + 3 ∗n2 +

1 ∗n3, which has different coefficient variables compared to the other output nodes. Thus, in this

example, there are three different linear combinations (the blue, green, and red lines), which can

be viewed as three different grouping methods for the given input variables.

Figure 1 An example of a fully connected layer with three nodes
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With the grouping perspective about a fully connected layer, we can explain its mechanism for

our task in a new way: a fully connected layer can group a firm’s covariates and then generate

the outputs that are predictive for the default and other-exit forward intensities. However, due to

the characteristic of a fully connected layer, the grouping methods of it are decided by the trained

weights, some of which may be redundant or even harm the performance of the model. Based on

this situation, it is helpful to remove some weights in a fully connected layer by replacing its own

grouping methods with the ones that have more economic significance. This method can reduce the

parameters of the model to prevent it from overfitting and leverage the economic domain knowledge

to improve the predictive power of the model.

To tailor a fully connected layer, we first extract some important factors that cause default and

other-exit events based on the findings in the previous economic research. To be more specific, we

attribute default events to the financial indicators derived from the aspect of liquidity, profitability,

solvency, and others ( Zhang et al. (2005), Xie et al. (2011)). Liquidity is the ability of a firm to

convert its asset to cash in the short term, which is a critical concern of default events. Compared

with liquidity, solvency considers a firm’s ability to meet its long-term obligations. Profitability

is more intuitive, representing the ability of a firm to earn money. If a covariate does not belong

to the previous three factors, we would group it into ”others”. Based on the definitions of these

factors, we can categorize a firm’s covariate into four groups. The details of the grouping methods

are as follows:1

1. Interest rate: Because it can influence the interest that a company needs to pay for its short-

term and long-term debts, we group it into ”Liquidity” and ”Solvency”.

2. Return of S&P500 index: Because the return of the S&P500 index represents the overall

environment of the financial market in the US, it can influence the liquidity constraints of

the market, which is related to the interest rate. Therefore, we group it into ”Liquidity” and

”Solvency”.

3. Financial Aggregate DTD and Non-Financial Aggregate DTD: These two covariates are like

the return of the S&P 500 index which can reflect the situation of the financial market, so we

also group them into ”Liquidity” and ”Solvency”.

4. DTD: The calculation of it includes the short-term and long-term debts of a firm, so we group

it into ”Liquidity” and ”Solvency”.

5. CA/CL and CASH/TA: We group them into ”Liquidity” like Ni et al. (2014).

6. NI/TA: The ratio reflects how much net income can a firm earn divided by its total assets, so

it is a covariate that belongs to ”Profitability”.

1 You can first see section 3.1 for the description of each covariate
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7. Size: Because a larger firm can have higher efficiency and market power to generate higher

profit( Lee (2009)), we group it into ”Profitability”.

8. M/B and SIGMA: In our opinion, these two covariates do not belong to the defined three

groups, so we put them into ”others”.

The summary of the grouping can be seen in Table 1, where the row denotes each covariate and

the column denote each group. In this table, 1 means the covariate belongs to the given group,

and 0 means they do not belong to it. For example, in the first row, we group ”Interest rate” to

”Liquidity” and ”Solvency”.

Table 1 Grouping table for default events.

Covariates Liquidity Profitability Solvency Others
Interest rate 1 0 1 0

Return of the S&P500 index 1 0 1 0
Financial Aggregate DTD 1 0 1 0

Non-Financial Aggregate DTD 1 0 1 0
DTD 1 0 1 0

CASH/TA 1 0 0 0
CA/CL 1 0 0 0
NI/TA 0 1 0 0

Size 0 1 0 0
M/B 0 0 0 1

SIGMA 0 0 0 1

For the other-exit (M&A) events, existing literature ( Rodrigues and Stevenson (2013)) shows

that they basically follow the hypotheses of efficiency, growth-resource, valuation, and size. The

hypothesis of efficiency assumes that the inefficient management of a company will be acquired

by a more efficient firm, which can increase its market capitalization. The hypothesis of growth-

resource describes that a firm with high growth and low resource or a firm with low growth and high

resource has a higher probability to be acquired and vice versa. Compared with the previous two

hypotheses, the hypothesis of valuation is quite simple. It states that there is a large likelihood for

an undervalued firm to be acquired. For the hypothesis of size, there are two different perspectives.

One states that a smaller firm is more likely to be acquired due to its lower acquisition cost. The

other states that mergers prefer acquiring a larger firm to increase the size of their companies.

Thus, it is not a linear relationship between acquisition and the size of the company, which can

be modeled by a non-linear approach, such as machine-learning techniques. Likewise, based on the

definitions of these hypotheses, we can categorize a firm’s covariate into the four groups as follows:

1. Interest rate and Financial Aggregate DTD: Because the financial aggregate DTD represents

the situation of the financial market and then can influence the interest rate which the financial

firms announce, these two covariates can yield a great impact on the borrowing cost of a
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company, which can be grouped into ”Efficiency”. Besides, the interest rate can be used as

a discount rate for the calculation of the value of a firm, so we also categorize these two

covariates into ”Valuation”.

2. Return of S&P500 index and Non-Financial Aggregate DTD: It is important to analyze a

firm’s value based on the overall market situation, which can be represented by the return of

the S&P500 index and non-Financial aggregate DTD. So, we group these two covariates into

”Valuation”.

3. M/B: Market-to-book ratio is a classic financial indicator to see whether a stock is overvalued

or undervalued. So, we group it into ”Valuation”.

4. DTD, CASH/TA, and CA/CL: We follow the setting in Rodrigues and Stevenson (2013) to

categorize the covariates related to liquidity and solvency into ”Growth-resource”.

5. SIGMA: SIGMA can represent the deviation between a firm’s stock value and the overall

market, which indicates how the firm is managed. So, we group it into ”Efficiency”.

6. NI/TA: In our opinion, this covariate can be grouped into all categories. For example, a

company with a high ”NI/TA” can reflect that it is a well-managed company and has nice

growth. Besides, ”NI/TA” can also influence how we value a company and reflect its size.

7. Size: It is intuitive that we group this covariate into ”Size”.

Table 2 Grouping table for Merge and Acquisition events.

Covariates Efficiency Growth-resource Valuation Size
Interest rate 1 0 1 0

Financial Aggregate DTD 1 0 1 0
Return of the S&P500 index 0 0 1 0

Non-Financial Aggregate DTD 0 0 1 0
M/B 0 0 1 0
DTD 0 1 0 0

CASH/TA 0 1 0 0
CA/CL 0 1 0 0
SIGMA 1 0 0 0
NI/TA 1 1 1 1

Size 0 0 0 1

Likewise, the summary of the grouping can be seen in Table 2, where the row denotes each

covariates and the column denote each group.

With the above grouping methods for the default and M&A events, we can finally transform a

normal fully connected layer into a DKT(domain-knowledge tailored) version. A schematic diagram

of it can be seen in Figure 2. Compared with the normal one, the DKT version of a fully connected

layer has the same input covariates, but it has a fixed size of output nodes and predefined edges

between the input nodes and the output nodes. To be more specific, in this figure, the blue nodes
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represent the four groups(”Liquidity”, ”Solvency”, ”Profitability”, ”Others”) for the default events,

and the green nodes represent the other four groups(”Efficiency”, ”Growth-resource”, ”Valuation”,

”Size”) for the M&A events. Besides, for each edge between the input and output nodes, it is

followed the criteria we defined previously. For example, the input covariate ”Interest rate” can

only have the edges which link to the output nodes ”Liquidity”, ”Solvency”, ”Efficiency”, and

”Valuation”, which is half of all output nodes. With this approach, we can remove some redundant

edges in a fully connected layer to regulate our model and obtain a better performance through

economic domain knowledge.

Figure 2 An example of DKT framework

2.3.2. GRU In the previous section, we introduce the basic unit of our DKT approach, which

is a revised version of a fully connected layer. In this section, we will further describe how we apply

our DKT approach to transform a normal GRU into a DKT one.

Before applying our DKT approach to GRU, it is necessary to see how a normal GRU works

by Equations 9 to 12. Here, Xi,t denotes the input covariates at time t, b∗ (br ,bz ,and bh) are

the bias vectors for different calculations, and ht−1 is the hidden vector at time t− 1. Noted that

Xi,t represents the information at the current time and ht−1 represents the information from the

past. With these definitions, we can first calculate the reset gate and the update gate for GRU

in Equations 9 and 10. The calculations of the two gates are similar. They first apply a linear

transformation to the input Xi,t and the hidden vector ht−1 by an inner-product operation with

different matrices W and U . The subscripts of each matrix denote that they are used for different

calculations. For example, Ur and Wr are used to calculate the reset gate. Secondly, they sum each

linear transformation together with the bias vectors br and bz. Thirdly, due to the characteristic

of a gate, they use a sigmoid function to transform the sum into a value between 0 and 1.

rt = σ(Ur ·ht−1 +Wr ·Xi,t + br) (9)
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zt = σ(Uz ·ht−1 +Wz ·Xi,t + bz) (10)

For ĥt, its calculation (Equation 11) is also similar to the reset gate and the update gate. The

main difference in its calculation is that it uses a tanh function instead of a sigmoid function,

indicating that it is not a gate. Besides, before it uses a linear transformation on ht−1, it first

applies an element-wise product on reset gate rt and ht−1. The motivation for this operation is to

filter the unimportant information in the past and retain the useful one for the current time.

ĥt = tanh (Uh · (rt�ht−1) +Wh ·Xi,t + bh) (11)

After obtaining the above three vectors, GRU can calculate the hidden vector at time t ht by

Equation 12. It is a linear combination for ĥt and ht−1, and the weights for them are the update

gate zt and the opposite vector of it (1−zt), indicating that GRU can consider updating its hidden

vector by the past information and the current information.

ht = zt�ht−1 + (1− zt)� ĥt (12)

For implementation, it is worth noting that the linear transformation is implemented by a fully

connected layer. For example, Ur · ht+1 is conducted by a fully connected layer, where Ur is its

parameters. Generally speaking, U∗ and W∗ are both the parameters for a give fully connected

layer.2

2.3.3. Domain Knowledge Tailored GRU (DKT GRU) To apply our DKT approach,

based on what we introduce in section 2.3.1, we first replace the matrices W∗ from fully connected

layers to our DKT layers. With this replacement, we can ensure that the input variables would

follow the predefined grouping criteria by economic domain knowledge. Besides, because the hidden

vectors ht are generated by DKT layers, the value of each dimension of them has its own economic

implication. To maintain the concept of the DKT approach (remaining the meaningful hidden

vectors), we also replace the matrices U∗ from fully connected layers with diagonal matrices. In

other words, with these diagonal matrices, the hidden vectors would only be stretched instead of

being grouped, indicating that there is no interaction between the values from each dimension of

the hidden vectors. After replacing these two kinds of matrices, we can get a new version of GRU,

which is what we called DKT GRU. Compared with a normal GRU, our DKT GRU has fewer

parameters, which can prevent it from overfitting. Besides, although DKT GRU is much simpler

than a normal GRU, it can still catch useful economic dynamics through our well-designed DKT

layers.

2 U∗ represent the set {Ur,Uz,Uh} and W∗ represent the set {Wr,Wz,Wh}.
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Table 3 Data description

Year Active Firms Default/bankruptcies (%) Other exit (%)

1994 6915 17 0.25 223 3.22
1995 7395 16 0.22 362 4.90
1996 7947 17 0.21 401 5.05
1997 8305 48 0.58 568 6.84
1998 8270 75 0.91 891 10.77
1999 7961 85 1.07 921 11.57
2000 7624 106 1.39 782 10.26
2001 6930 174 2.51 757 10.92
2002 6229 118 1.89 533 8.56
2003 5825 80 1.37 472 8.10
2004 5664 37 0.65 371 6.55
2005 5649 35 0.62 384 6.80
2006 5591 21 0.38 382 6.83
2007 5611 23 0.41 463 8.25
2008 5275 58 1.10 382 7.24
2009 4983 105 2.11 322 6.46
2010 4855 29 0.60 313 6.45
2011 4704 32 0.68 304 6.46
2012 4591 39 0.85 262 5.71
2013 4621 28 0.61 239 5.17
2014 4772 27 0.57 212 4.44
2015 4858 40 0.82 275 5.66
2016 4802 65 1.35 362 7.54
2017 4710 42 0.89 311 6.60
2018 4737 20 0.42 262 5.53
2019 4772 33 0.69 292 6.12
2020 4967 70 1.41 238 4.79
2021 5785 17 0.29 242 4.18

3. Data and Performance metrics

In this section, we describe the details of our data and performance metrics, including the statistics

of our dataset, the descriptions of each variable, and the math formulas for our performance metrics.

3.1. Data

We conducted our experiments on the Credit Research Initiative (CRI) database, which is main-

tained by the Asian Institute of Digital Finance (AIDF) of the National University of Singapore.

This dataset contains 17,560 public firms in the US and has given rise to 1,833,106 firm-month

observations over the period from 1994 to 2021. We can see a summary of the dataset in Table 3.

This table shows the number of active firms, defaults, and other exits for each year. As you can

see, the overall default rate is ranging from 0.21% to 2.51% in each year, and the rate of other

exits is much higher, which ranges between 3.22% and 11.57%.
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In this dataset, there are 16 variables for each firm-month observation, containing 4 common

variables and 12 firm-specific variables. As the description in the technical report of Credit Research

Initiative (2020), these variables are chosen as having a great power to predict the corporate defaults

in the US. The descriptions of each covariate are as follows:3

1. Common variables

• Interest rate: 3-month short-term US Treasury bill rate.

• Stock index return: the trailing one-year return on the S&P500 index.

• Financial Aggregate DTD: median DTD of financial firms in the US.

• Non-Financial Aggregate DTD: median DTD of non-financial firms in the US.

2. Firm-specific variables

• DTD: firms’ distance to default, which is used to measure volatility-adjusted leverage

based on Merton (1974). The calculation of DTD for financial firms follows the setting in

Duan et al. (2012).

• NI/TA: the ratio of net income to the total assets, which is used to measure the prof-

itability of a company.

• CASH/TA: logarithm of the ratio of the sum of cash and short-term investments to the

total assets, which is used to measure the liquidity of a financial firm.

• CA/CL: logarithm of the ratio of the current assets to the current liabilities, which is

used to measure the liquidity of a non-financial firm.

• Size: logarithm of the ratio of a firm’s market capitalization to the median market capi-

talization of the firms in the US over the past year.

• M/B: a firm’s market-to-book asset ratio divided by the median market-to-book ratio of

the firms in the US.

• SIGMA: 1-year idiosyncratic volatility, calculated following Shumway (2001). It is com-

puted by regressing the daily return of a firm’s market capitalization against the daily

return of the S&P500 index. SIGMA is defined to be the standard deviation of the resid-

uals from this regression.

For the first five firm-specific variables, we follow the setting in Duan et al. (2012) to transform

them into the level and trend versions of the measures. The level is computed as the one-year

average of the measure, and the trend is computed as the current value of the measure minus the

one-year average of the measure. Duan et al. (2012) has proved that the usage of level and trend

significantly improves the predictive power of the model in the short-term prediction horizons.

Compared to the previous research, among these variables, 12 of them are used in Duan et al.

(2012) and 14 of them are used in Luo et al. (2022). The summary statistics of each covariate can

be seen in Table 4.

3 Please see the technical report Credit Research Initiative (2020) for more details.
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Table 4 Covariates statistics

Mean Std. Min 25%ptcl Median 75%ptcl Max

Interest rate -0.080 0.852 -1.195 -1.052 -0.202 0.819 1.506
Return of S&P500 0.101 0.162 -0.488 0.031 0.115 0.201 0.668
Financial Aggregate DTD 0.591 1.257 0.000 0.000 0.000 0.000 5.119
Non-financial Aggregate DTD 2.758 1.627 0.000 2.172 3.122 3.961 5.427
DTDlevel 3.949 3.460 -1.603 1.970 3.332 5.151 53.653
DTDtrend -0.060 1.180 -11.698 -0.558 -0.012 0.496 6.095
CASH/TAlevel -0.004 0.252 -3.311 0.000 0.000 0.000 3.224
CASH/TAlevel -0.684 1.464 -9.617 0.000 0.000 0.000 0.000
NI/TAlevel -0.004 0.032 -0.916 -0.003 0.001 0.005 0.201
NI/TAtrend -0.000 0.025 -0.491 -0.002 0.000 0.002 0.460
Sizelevel 0.088 1.999 -5.912 -1.345 -0.018 1.411 6.673
Sizetrend -0.016 0.340 -1.905 -0.161 -0.006 0.145 1.985
M/B 1.590 2.793 0.157 0.760 0.986 1.571 75.891
SIGMA 0.170 0.117 -0.072 0.088 0.138 0.217 1.106
CA/CLlevel -0.012 0.293 -2.472 -0.074 0.000 0.049 2.584
CA/CLtrend 0.655 0.814 -3.817 0.000 0.547 1.090 4.781

3.2. Performance Metrics

To comprehensively evaluate the performance, we measure our model in two different perspectives:

the discriminatory power of risk ranking among companies and the matching ability between actual

default rates and estimated ones.

3.2.1. Accuracy Ratio To evaluate the discriminatory power of risk ranking among compa-

nies for our model, we employ the cumulative accuracy profile (CAP) and its associated accuracy

ratio (AR). The accuracy ratio (AR) is defined as the ratio of the area between model CAP and ran-

dom CAP, which can summarize the cumulative accuracy profile (CAP) in a quantitative way. For

a good model, its AR would range from zero to one. The higher the score is, the better the model.

Additionally, there exists a relation between the AR and the area under the receiver operating

characteristic (ROC) curve: AR = 2AUC− 1.4

3.2.2. R-square(compared with FIM) Except for the power of risk ranking, the matching

ability of a model between actual default rates and estimated ones is also important. For this

purpose, we followed Duan et al. (2012) in employing the convolution-based default aggregation

algorithm( Duan (2010)) to estimate the default rates from the predicted probability for a given

prediction horizon (1, 3, . . . , or 60 months). Specifically, at each month-end, we obtain the predicted

default rates for all active firms in this period for a prediction horizon. Then, we compare them

4 Both CAP and ROC are commonly applied by banks and regulators to analyze the discriminatory ability of rating
systems that evaluate credit risk Crosbie and Bohn (2003), Vassalou and Xing (2004).
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with the observed default rates in the given prediction horizon. We repeat this process for all of

our test samples and different prediction horizons. (Recall that Figure(c) plots the comparison for

1- and 60-month prediction horizons, where the bars depict the actual default rates and the lines

correspond to the model estimations.) To measure the distance between these two default rates,

the intuitive thought is to use R2 (Eq. 15, where yi is the default rate of an observation and fi,m is

the estimated one of the model) with a trailing realized default rate over the same duration ( ȳ in

Eq. 13), i.e., for k-period forward, we use k-period trailing realized default as a näıve prediction.

SStotal =
∑
i=1

(yi− ȳ)2. (13)

SSres =
∑
i=1

(yi− fi,m)2 =
∑
i=1

e2
i (14)

R2 = 1− SSres

SStotal

. (15)

However, the above practice would shorten the number of data points in the evaluation. Therefore,

we use FIM as the benchmark to compute the R2 (Eq. 17), i.e., 1 minus the ratio of the sum of

squared residuals (Eq. 14) from one model over the same from FIM (Eq. 16, where fi,FIM is the

estimated default rate by FIM). If the value of this metric is higher than 0, it means that our

model performs better than FIM and vice versa.

SSFIM =
∑
i=1

(yi− fi,FIM)2 =
∑
i=1

e2
i (16)

R2
FIM = 1− SSres

SSFIM

. (17)

4. Empirical Results

In this section, we describe the details of our empirical results. First, we introduce how we conduct

our cross-sectional experiment and overtime experiment. Second, we describe our results for these

two experiments, including the value of each performance metric and the graph of the aggregate

default rates. Third, we describe the results for different sub-groups of our dataset in overtime

experiments.

4.1. Experiments

To evaluate our model, we used two different settings when splitting the data into training, vali-

dation, and testing sets. The first experimental setting is referred to as the “cross-sectional exper-

iment,” in which we mix 1.8 million monthly samples and separate them into training and testing
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sets with a ratio of 9:1. For the training dataset, we further partition it with the 9 to 1 ratio

(cross-sectionally) into the core training and validation sub-samples to decide the training epochs

for our model. Finally, we would use the decided training epochs to train our model in the whole

training sample. Note that in this setting, the data samples from different periods are mixed, which

is a commonly adopted approach in literature to attest to model capacity and compare model

performance.

The second setting is referred to as the “overtime experiment,” for which we use an expanding

window setting along the time axis to conduct the experiments. Note that this setting is a commonly

used and practical setting for scenarios involving time effects. Specifically, the sample period for

our dataset is Jan 1994 to Nov 2021, totaling about 28 years, and the training sample size is first

set to 10 years and then uses only the data available at the time for estimation, which is Jan 1994

to Dec 2003. For this training sample, like what we do in the cross-sectional experiment, we would

partition the dataset into sub-training and validation (also a 9:1 ratio) and then build our model.

For every month over the next year, i.e., 2004, we would perform 1-month to 5-year predictions

based on our model and record the results. Advance one year to Dec 2004, we re-train the model

using the expanded dataset from Jan 1994 to Dec 2004. Again for every month over 2005, we

perform 1-month to 5-year predictions and record the results. We would repeat this process all

the way to the end. Finally, we can have aggregate out-of-sample predictions of 18 years (2004 to

2021) and then use them to evaluate the performance of our models. It is worth noting that for

such a prediction task involving data across a very long time period, the data distributions are

by nature extremely volatile across different time periods; therefore, the purpose of the overtime

experimental setting is to evaluate the model’s ability to react to new, incoming data, which is

more correspond to the real-world application.

4.2. Cross-Sectional Results

Table 5 shows the quantitative results of the cross-sectional experiments for each prediction horizon

in AR and R-square (compared with FIM), in which ”red color” denotes that the model performs

worse than FIM and “bold text” means that the model yields the best performance among all

models. Besides, the improvement is between the metrics obtained from the best models and FIM.

According to the table, firstly, there are no ”red color” at all, which means that all the neural

models outperform FIM in all prediction horizons. Specifically, the AR increases from 1.994%

to 21.655% for the 60-month prediction horizon; the R-square(compared with FIM) from each

prediction horizon ranges from 0.04 to 0.583, which is also commendable progress for corporate

default prediction. This situation demonstrates the great potential of neural networks applied to the

task of multiperiod default prediction for the settings of the cross-sectional experiment. Secondly,
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Table 5 Results of cross-sectional experiments

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 95.443 93.337 91.178 86.746 86.192 76.925 69.649 64.687 60.070
MLP 96.144 94.317 92.538 89.174 88.693 81.771 75.783 70.794 66.418
GRU 97.346 95.025 93.787 91.591 91.302 86.342 81.375 76.863 73.079
DKT GRU 97.330 94.912 93.364 90.645 90.311 84.844 79.678 74.807 70.666

Improvement (%) 1.994 1.809 2.861 5.585 5.928 12.241 16.837 18.822 21.655

Panel B R-square (compared with FIM)

MLP 0.037 0.059 0.096 0.176 0.193 0.280 0.354 0.320 0.273
GRU 0.025 0.205 0.231 0.360 0.402 0.578 0.579 0.479 0.431
DKT GRU 0.040 0.177 0.223 0.332 0.379 0.553 0.583 0.496 0.446

GRU-based models perform better than MLP( Divernois (2020)) in the most cases, indicating that

capturing economic dynamics is helpful for corporate default prediction. Thirdly, among the three

neural models, GRU yields the best performance. The reason behind this is that when there is

little difference between the label distribution of the training dataset and the one of the testing

dataset, a more complicated model(GRU) would capture the relation between the firms’ covariates

and the default events better.

4.3. Overtime Results

The results of the overtime experiments are listed in Table 6. Noted that these results are evaluated

in the aggregate out-of-sample predictions for 18 years. From this table, we observe that the MLP

performs worse than FIM in most cases (15 over 18), showing that directly adding functional

flexibility may not work in the overtime experiment. In addition, although the GRU performs

better than the MLP and FIM in AR, it performs worse than MLP and FIM in R-square (compared

with FIM). This situation tells us that capturing time dynamics without filtering noisy covariates

seems not good enough. Compared with the cross-sectional experiment, the results in overtime

experiments are quite different, indicating that a different distribution between training and testing

datasets would significantly influence the performance of normal neural models. This difference also

implies that the neural-based models without modification are not qualified to be applied in real-

world applications. However, according to the results, you can see that our proposed DKT GRU

dominates the other models. More importantly, the results demonstrate that our DKT approach

can regulate the model to gain better performance both for risk ranking and in terms of matching

the aggregate default distribution for new incoming data, especially in long prediction horizons;

for example, for the 60-month default prediction, the improvements on AR is 14.837% and the

R-square (compared with FIM) is 0.757.
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Table 6 Results of overtime experiments

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 93.538 92.191 90.040 86.383 85.619 76.410 68.086 60.356 53.915
MLP 93.445 92.195 89.856 85.830 85.000 74.169 65.814 58.851 52.765
GRU 94.268 93.143 91.515 88.667 88.018 78.472 70.856 64.483 59.294
DKT GRU 94.767 93.559 92.000 89.301 88.693 80.379 73.681 67.330 61.914

Improvement (%) 1.314 1.483 2.177 3.378 3.591 5.193 8.218 11.556 14.837

Panel B R-square (compared with FIM)

MLP 0.110 0.123 −0.001 −0.046 −0.036 −0.101 −0.144 −0.092 0.053
GRU −0.470 −0.486 −0.770 −0.594 −0.557 −0.475 −0.329 −0.243 −0.081
DKT GRU 0.156 0.315 0.279 0.160 0.155 0.098 0.370 0.554 0.757

4.3.1. Aggregate default rates Figure 3 shows the aggregate default rates of FIM and our

proposed DKT GRU, which are related to how we calculate the R-square (compared with FIM).

The blue bars in the figure indicate the actual default rates and the curves correspond to the

estimation of different models. Due to how we split the data in overtime experiments, the result

shown in the figure is concatenated from each testing year. For example, the default rates in the

year 2004 of each subfigure come from the first testing fold; similarly, the ones in the year 2005

come from the second fold. For shorter horizons, the predicted default rates from the models match

the observations quite well. Compared with FIM, DKT GRU can provide a wider range of default

rates, indicating that it can catch the peak and low of the observation better. However, as the

prediction horizon increases, there is more difference between the predicted default rates and the

observed ones, showing a worse performance. As you can see, some of the difference comes from the

”jumps” for the predicted default rates. The reason for these jumps is that we expand our training

dataset and retrain our models every year. Compared with the default rates predicted by FIM,

the ones predicted by DKT GRU are more stable, especially for the periods around 2004-2005 and

2010-2012. These observations suggest that our DKT GRU can regulate the model to generate

stable predictions and then make for a better estimator of future uncertainty.

4.3.2. Sub-samples analysis Except for the overall performance, we also evaluate the per-

formance of our models for two sub-samples. One sub-sample contains only financial firms (SIC

between 6000 and 6999) and the other comprises all the non-financial firms. The results for the

financial firms can be seen in Table 7. From this table, we can observe that all models have worse

accuracy ratios compared with the ones of the full sample, indicating that the default rates of

financial companies are hard to predict. However, our DKT GRU still performs well in this sub-

sample, which achieves 27.982% improvement in AR and has a positive R-square (compared with

FIM) in all prediction horizons.
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Figure 3 Aggregate default distributions

On the other hand, the performance of the non-financial firms can be seen in Table 8. From this

table, we observe that the accuracy ratios for the non-financial sub-sample are similar to the ones

of the full sample. However, the R-squares (compared with FIM) are quite different from the ones

of the full sample in two parts. One is that MLP outperforms FIM in all prediction horizons. The

other part is that although DKT GRU performs the best in most cases, its performance is worse

than MLP in the prediction horizons of 9, 12, and 24.

In summary, although our DKT GRU generates the best performance in most cases for these

two sub-samples, it still needs to be improved in some specific prediction horizons.

4.3.3. Time-Varying Performance Except for analyzing our models’ performance for dif-

ferent industries, we further evaluate our models’ time-varying performance. For this purpose, we

group our test dataset by time into two sub-samples - high credit risk years and low credit risk

years. We use the annual realized default rate as our grouping criteria. To be more specific, we
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Table 7 Results of overtime experiments for financial companies

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 89.640 89.311 88.742 85.936 85.150 72.360 59.179 47.430 39.949
MLP 90.111 89.104 86.752 81.772 80.722 62.602 49.679 41.198 35.558
GRU 90.741 89.806 89.240 89.222 88.825 74.271 60.278 48.634 38.806
DKT GRU 90.377 89.904 89.528 89.415 89.116 78.685 69.092 59.183 51.127

Improvement (%) 0.928 10.664 0.885 4.048 4.659 8.741 16.750 24.782 27.982

Panel B R-square (compared with FIM)

MLP −0.020 −0.067 −0.155 −0.271 −0.272 −0.321 −0.324 −0.370 −0.465
GRU −1.409 −2.171 −2.065 −1.515 −1.494 −1.365 −1.325 −1.481 −1.826
DKT GRU 0.016 0.109 0.215 0.253 0.239 0.175 0.195 0.123 0.001

Table 8 Results of overtime experiments for non-financial companies

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 93.805 92.313 89.922 86.019 85.215 76.164 68.473 61.408 55.079
MLP 93.706 92.422 90.015 85.914 85.078 74.804 66.995 60.370 54.377
GRU 94.633 93.502 91.699 88.480 87.798 78.709 71.734 66.173 61.882
DKT GRU 95.110 93.848 92.088 88.997 88.343 80.054 73.727 68.147 63.132

Improvement (%) 1.391 1.663 2.408 3.462 3.671 5.108 7.674 10.973 14.620

Panel B R-square (compared with FIM)

MLP 0.134 0.195 0.132 0.136 0.142 0.104 0.101 0.225 0.452
GRU −0.112 −0.005 −0.207 −0.221 −0.218 −0.298 −0.110 0.078 0.425
DKT GRU 0.153 0.295 0.222 0.110 0.102 −0.021 0.302 0.499 0.681

calculate the realized default rate for each year in the test dataset (2004 - 2021) and sort them

into three parts from high to low: the top, the middle, and the bottom, where there are different

6 years in each part. We only use the top six years as the high credit risk years(2008, 2009, 2015,

2016, 2017, 2020)5 and the bottom six years(2006, 2007, 2004, 2014, 2018, 2021) as the low credit

risk years to analyze our model. It is worth noting that when we analyze our model in these sub-

samples, we use them as our estimation time. For example, to analyze the model’s performance in

2008, our model will use the information before 2008/12/31 to generate the default probabilities

for all prediction horizons.

After grouping, we evaluate our models on these two sub-samples. In Table 9, we can observe

the results for the test data in the low credit risk years. From this table, our DKT GRU achieves

the best performance in most cases, especially for the longer prediction horizons. For example, it

5 2008 and 2009 denote the period for the financial crisis, 2015-2017 denote the period for the prolonged energy stress
and the economic crisis in other countries, and 2020 denotes the period for COVID-19
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can outperform FIM 20% in accuracy ratio and obtain 0.898 R-square(compared with FIM) in

the 60-month prediction horizon. Although DKT GRU is not the best model for some prediction

horizons, it still can achieve comparable performance. These results show that our DKT GRU

works well in the low credit risk years.

Table 9 Results of overtime experiments for low credit risk years

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 90.667 88.527 87.382 83.908 82.599 69.853 59.282 51.071 43.899
MLP 90.414 88.995 88.165 84.177 82.633 65.481 56.324 50.834 44.894
GRU 90.551 89.752 89.840 87.234 86.312 72.827 63.498 56.396 50.027
DKT GRU 91.405 89.785 89.801 87.458 86.433 74.373 66.578 59.592 52.805

Improvement (%) 0.814 1.422 2.813 4.231 4.643 6.470 12.308 16.686 20.286

Panel B R-square (compared with FIM)

MLP −0.315 −0.506 −0.610 −0.701 −0.692 −0.011 −0.105 −0.123 0.103
GRU −0.225 −0.173 −0.150 0.022 0.045 0.023 −0.015 0.158 0.282
DKT GRU −0.093 −0.045 −0.008 0.109 0.112 0.083 0.427 0.825 0.898

On the other hand, we can see the models’ performance for the high credit risk years in Table 10.

Although DKT GRU still obtains a good performance in most cases, it achieves worse in the

longer prediction horizons compared to the results for the low credit risk years, especially in R-

square(compared with FIM). However, FIM and MLP perform much better. The reason behind

these results is that the predictions generated by the models are influenced by the current infor-

mation they have in the high credit risk years. Given such information, the models can probably

generate a higher cumulative default rate for all prediction horizons. The longer the prediction hori-

zons, the large difference between the estimated cumulative default probabilities and the realized

ones. Besides, the more complicated model is more influenced by this situation, such as GRU.

5. Conclusion

We have developed a domain knowledge-tailored neural network to address the task of multiperiod

corporate prediction. Our method follows the FIM’s framework and then can generate the forward

intensities for default/bankruptcies and the other-exit events, enabling it to output a consistent

cumulative default term structure. Depart from traditional neural networks, we leverage economic

domain knowledge to tailor the networks, regulating the model to gain better performance and

preventing it from overfitting. Experiments on a large real-world corporate default dataset over

a lengthy period of time are used to demonstrate the efficacy of our proposed approach. The

findings show that our model produces a performance that is noticeably better than the most
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Table 10 Results of overtime experiments for high credit risk years

Horizons (months) 1 3 6 9 12 24 36 48 60

Panel A Accuracy ratio (AR) (%)

FIM 92.856 92.213 90.279 86.565 85.993 80.187 75.694 70.958 68.698
MLP 92.668 91.730 89.190 82.251 84.641 77.795 72.358 65.642 61.987
GRU 93.786 93.019 90.893 87.461 86.839 79.832 74.525 68.667 63.809
DKT GRU 94.089 93.390 91.358 88.223 87.729 81.724 76.848 71.027 67.872

Improvement (%) 1.328 1.277 1.194 1.916 2.018 1.916 1.524 0.097 −1.289

Panel B R-square (compared with FIM)

MLP 0.218 0.288 0.214 0.128 0.132 0.004 −0.014 −0.096 0.230
GRU −0.483 −0.390 −0.715 −0.777 −0.767 −1.155 −1.633 −1.795 −1.570
DKT GRU 0.230 0.406 0.362 0.149 0.127 −0.089 −0.164 −0.338 0.177

advanced statistical model. Besides, it also displays that our DKT method can obtain a more robust

performance than traditional neural networks. To further analyze our model, we also evaluate it

on different sub-groups of our dataset. For financial firms, non-financial firms, and the low credit

risk periods, our model performs very well in most cases. For high credit risk periods, our model’s

performance degrades in long-term prediction horizons in terms of R-square(compared with FIM)

because the model is influenced by the information obtained by the estimation time. With more

investigation, we believe that this problem can be solved in future research.
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